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ABSTRACT

A detailed description of the lethal area problem is given,including a

discussion of the procedure presently used at BRL in the computations of

lethal areas.
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INTRODUCTION

This technical note was originally prepared in 1957 as an internal

working paper. The intent was to present a detailed description of the lethal

area concept at BRL and the method used to compute lethal areas on high speed

digital computers. In view of the wide interest in this area over the years

and as a consequence of several recent requests for copies, this technical

note has been prepared.

The initial portion of this paper consists of an up-dating of the lethal

area concepts discussed in BRL Report No. 800(l)* which was necessitated by the

introduction of more refined casualty criteria and presented area functions.

The remainder of the paper is devoted to a discussion and description

of the techniques and procedures presently used in lethal area evaluations.

Although, the possible extensions of the problem are not covered specifically,

it is felt that sufficient background is given to allow these special cases

to be handled by the reader as necessary.

LETHAL AREA CONCEPT AND INPUT REQUIRED

Lethal area can be expressed mathematically as follows: Define a(x,y)

as the density of targets in an element of area about the point (x,y) and

denote the probability that a target in that element of area will be incapaci-

tated as P K(X,y). We may then write the equation for the expected number of

casualties, Ec, as follows:

-+00 400

Ec f f a(x,y) PK(xy) dxdy.

Now if we assume the targets are uniformly distributed over the ground plane,

a(x,y) can be represented simply as a constant, a, and we can write:

Ec +00 +

- = f f P (x,y) dxdy.
Cr -00 -00 K

The parenthetical superscripts refer to reference numbers.
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The quantity a c has the dimensions of area and is called the lethal

area. Some operations analysts often refer to this quantity as the

mean area of effectiveness (M.A.E.). It is obvious from an examination of

this expression, that the lethal area when multiplied by the density of targets,

will yield the expected number of casualties. A further examination of the

above expression indicates that lethal area is really just a weighted area;

the weight for each element of area being determined by the probability of

incapacitation function PK(x,y).

Let us now look at some of the geometry associated with the problem.

(See Figure 1).

e)

h

Figure 1



Assume that the shell is approaching the ground at an angle of fall w and

velocity Vh. The shell bursts at height h. The problem is to find the

probability that a target at the point (x,y) is "killed" by the shell. We

see that the target will be located in a small fragment spray leaving the

shell about an angle @ measured from the nose of the shell. In order to

determine the probability that the target will be a casualty, a considerable

amount of information will be required. Specifically, the type of information

required may be listed as follows:

(1) Velocity fall off law.

(2) Casualty criterion.

(3) Target presented area.

(4) Fragment mass distribution.

(5) Fragment density.

(6) Initial fragment velocity.

The manner in which the velocity falls off with range, r, is usually approxi-

mated in the following manner:

Cd p A f r

V (r) V e m

where V is the initial fragment velocity, Cd is the drag coefficient, p is

the air density, Af is the average presented area of the fragment, and m is

the weight of the fragment. In this connection, Cd and Af are generally

determined experimentally, unless of course the shape of the fragments are

such that Af may be estimated theoretically. In any event, once these

constants have been determined, we are in a position to determine the velocity

of that specific fragment as a function of distance traveled.

During the past few years a concentrated effort has been directed towards

obtaining a realistic casualty criterion. To this end, the Biophysics Laboratory

at Edgewood Arsenal has developed information pertaining to the wounding power

of various size fragments striking the body at various velocities. These data

were analyzed by personnel of the Terminal Ballistics Laboratory here at BRL.

The resulting casualty criteria originally were reported in BRL Report No. 996!2)
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A subsequent medical reassessment of the basic wound data resulted in a modi-

fication of these criteria as described in BRL Technical Note No. 1297.(3)

Essentially, these casualty criteria are a series of functions for various

tactical situations which describe the probability that a fragment hitting a

target will create a casualty.

With respect to the target presented area At, various "cover functions",

or more properly, presented area functions, have been in existence for some

time which describe the presented area of the target as a function of the

position of the target relative to the burst. Some of the more prominent

cover functions which have been used are: (1) a variety of cut-off angles

which were intended to simulate foxhole cover; (2) the ORO cover functions

which express the presented areas as a function of the aspect angle; and

(3) most recently, some new BRL cover functions which have been developed to

consider typical terrain features. The latter are described in BRL Memorandum

Report No. 1203!k)

The fragmentation characteristics of the shell can adequately be described

in terms of initial fragment velocity, fragment density and fragment mass dis-

tribution. In most cases, these data will vary as a function of Q, the angle

measured from the nose of the shell. Typical plots of initial fragment ve-

locity Vo, and fragment density are shown in Figure 2.

U •o

0 U

0 TI T 0 TT T

Figure 2
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Fragment mass distributions, as the name implies, are used to describe

the distribution of fragment sizes within a spray. These mass distributions

are also a function of G. In general, these fragmentation characteristics

are determined from static detonation tests where fragments are collected in

recovery boxes filled with celotex sheets. The fragments are then extracted

from the celotex, counted and weighed. Fragment velocity measurements are

made with the aid of high speed photography. A description of the techniques

employed in the fragmentation tests conducted for the BRL by Development &

Proof Services is given in Reference 5.

How then are these basic data combined mathematically to yield PK(X,y)?

To illustrate, let us suppose that a small spray about the angle 0 is comprised

of only three fragment sizes; namely mI1 grains, m2 grains and m3 grains, and
further, that ql is the fraction of the fragments in the spray weighing m 1

grains, q2 is the fraction of the fragments in the spray weighing m2 grains and

q 3 is the fraction of the fragments in the spray weighing mi3 grains. Since we

have assumed that the fragments in this spray all leave the shell with the same

velocity, we can employ the velocity fall-off law described previously and thus

associated with our three fragment sizes we will have three striking velocities;

VI, V2 and V . Using the casualty criteria we can then determine the proba-

bility that the target will be incapacitated if hit by a fragment weighing mI

grains and moving at a velocity V1 . We denote this probability by P hk;

similarly, we have Phk2 and P hk. If we then describe the density of all the

fragments of the spray to be r fragments per steradian, the density of m

fragments will be q 1r; mi2 fragments q2r1 and mi fragments q5 N. Now, employing
of 3T

A V the presented area of the target, we should expect 2 of the m grain
ql•At gq•At r

fragments; -2p-- of the m2 fragments and 2 of the rnm fragments to hit
r r

the target. The probability, therefore, that the target will not be "killed" by

the mI fragments may be represented as follows:
q At

2
r

(1 -Phk

1l



Similarly, the probability that the target would not be "killed" by the m2

fragments would be as follows:

q2 At

r(I- P•2 r
2

and for the m3 fragments as follows:
q31At

r(1 )
3

Then the probability that the target will not become a casualty by either of

the m,, m2 or m3 fragments can be represented by

qlD A" q2TIAt v•A t

r r r(i-P hk1 x (i- P h) x (i- P hk)
h2 3

For most practical problems, with natural fragmenting shell, there will be

many more mass groups than I have discussed here, and it would therefore be

advantageous to use the Poisson approximation to the binomial distribution

just discussed, i.e.:

qiqAt Phki clnAt

r r(i P hki se

Thus, the expression for the probability that none of the fragments in "n"

mass groups would create a casualty can be written:

-1 At n
- E ql P hk

r i=l
e
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We are now in a position to write the expression for Pk' the probability

that the target is killed, as follows:

-1At n

2 E qi Phk.
r 1=1 l

Pk = 1 - e

There has from time to time been considerable discussion regarding this

"approximation" of the probability of incapacitation, inferring that the

Binomial approach represents a "true"solution. Actually a more correct

application of the binomial distribution could lead to an expression of the

form:

n 
At Phk

P = 1- 2 (- tb)
ki=l 4 r

N

where N represents the total number of fragments in the spray and =

n being the number of steradians subtended by the spray.

This expression for theprobabilityof incapacitation can again be

approximated by:

SAt n
2- E cRi Phk.

Pk = 1 e- r i=l .

Even so, the Binomial itself must be considered only as approximation since

fragments projected from the same shell cannot really be considered as
T A t n

"independent events". Further, if one considers that -- n- E 9i Phk.
r i=l 2

is the number of incapacitating fragments-expected to strike the target, an

estimate of the probability that the target is hit by at least one such

.fragment, i.e., the probability that the target is incapacitated, can be
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estimated directly by the Poisson distribution as:
SAt n
= z ql P hk.

At n Phki] o r i=l 1

Pk = E - - e
r i=l

nAt n

r i=l i
= l-e

To the author's knowledge, no extensive comparisons of lethal areas computed

using the Binomial and Poisson forms for the probability of incapacitation

have been made. However, in some isolated cases where such comparisons have

been made, the difference did not appear significant, particularly in light

of other assumptions inherent 'in the lethal area concept.

LETHAL AREA COMPUTATION

Having obtained the input data described in the preceding sections, one

is now in a position to proceed to the actual computation of a lethal area.

The following sections describe the method presently being used at BRL.

By a transformation to the (r,o) coordinate system the lethal area

integral becomes:

AL = f f r Pk(r,o) dr do
r o

where r is the distance from the burst to a point on the ground and ( is an

angle in the ground plane measured from the projection of the shell trajectory

into that plane to the line joining the origin to the point in the ground plane.

The minimum distance to the ground plane is h, the height of burst, and

although theoretically the upper limit on r would be infinite in practice we

shall use the value rm2 such that for all r > rm2 the value of the integrand
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would be zero. Taking advantage of the symmetry in o the integral becomes:

A,,= 2 f r Pk(r,o) dr do
h 0

Or

r17 h+l r i r iAL = 2 f r Pk(r,o)drd¢ + flf r Pk(r,o)drda + f r Pk(ro)drdj
h0 h+l 0 r ml 0

If in the second integral we make the substitution d (Ln r) = - dr we have:
r

Lnr it 2
f r Pk(ro) d~d(Ln r).

Ln(h+l) 0

It will be noted that if one integrates numerically with respect to Ln r,

taking equal step sizes in Ln r, the effect will be to concentrate the

evaluations of the integrand in close to the point below the burst where one

might expect the integrand to change rapidly, and to spread out the interval

in r between successive evaluations of the integrand at the longer distances.

It is also apparent why the integration from h to rml was separated into two

parts. Without the separation the lower limit of the integral for h = 0,

would have become Ln (0). It should also be noted that the separation of the

integration at h+l is purely arbitrary. In practice, the first of the three

integrals is approximated by:

(h ) f Pk (h+l, )d

0

In evaluating the third integral, the integration in r is accomplished in

equal steps of r.



The lethal area integral as evaluated by the machine is then:

Ln (r mi)2 it
AL 2 (h+1/2) f Pk(h+l,0)d4 + f r f Pk( rO)d.] d(Ln r)

0 Ln(h+l) 10

r
+ jm2r P k (ro)ft dr

rml [Of

.where as indicated the integration over o is considered as part of the

integrand with respect to r.

Generally the fragmentation data are obtained for shell detonated stati-

cally. It is necessary therefore, to adjust the data to simulate the fragmen-

tation characteristics of a shell bursting in flight.

The fragmentation data obtained from tests consist of an average initial

fragment velocity, average fragment density and a mass distribution for each
0 0

of several intervals of the angle 9 between 0 and 18o . Continuous functions

of initial fragment velocity and fragment density vs-9 are obtained by plotting

these quantities at the midpoints of their respective intervals and connecting

the points by straight line segments. Mass distributions are considered to be

constant over the interval which they represent.

Figure 3 indicates the scheme for adjusting the static fragmentation data

to dynamic data.
V h

V D V s

e D e Vs
s

Figure 3
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Here a fragment,which would have left the shell at a velocity V and an

angle Q had the shell been at restwould be thrown forward by the shell's
s

remaining velocity Vh to an angle 9 D-' the resultant initial velocity being VD.

The following relations can be used to determine V Dand QD

1) Vs ssin s = VD sin QD

2) V Cos s + Vh = VD Cos QD

) V=v2 +V? +2V V Cos
s h s

In addition to the change in fragment direction and initial velocity it

will be noted that if a small fragment spray of width 2Q s, centered at Qs

is thrown forward to a spray of width 2AGD centered at %D, the density of

fragments in the spray will change from a to aD. Since the number of fragments

contained in the spray, N, will remain constant we have the relations:

N N
s 4=isins sinZ s 4isinQD sinL\9 D

or

sing sinAQ
s saD= a sin@D sinAQ
QD D

then

Lim Ia ssin g l sin AgI s sin gs d NOZSgs- _ 0 sin g@D Isin AN s a sinO d D

d@
In order to compute SD we consider the equation:

V CsO siO snG=V sinG CosO@

Vs Co s sin@D + Vh sin@D Vs s D

17



Now since our function of V vs. 9 is made up of a number of straight line
s

segments we may express V by:
s

Vs(@) Ai 9 + Bi , in radians

where the constants Ai and Bi depend upon the interval in which 9s is

contained.

Making this substitution for V and carrying out the differentiations

we find:

dQ VD( %)
= A sin (9 -D) + V Cos ( D
D 97

To obtain the dynamic fragmentation characteristics needed for the lethal area

code a supplementary code has been devised which takes as input, a table of

initial fragment velocity, density and a count number tabulated for each 5o

from 9s = 0 to 9s = 1800. The count number is merely a device used to identify

the mass distribution associated with a particular interval in 9 . This iss
accomplished by choosing count numbers so that all count numbers corresponding

to angles of 9s from a particular interval, when rounded off to the nearest

integer give the integer corresponding to the identification number of the

mass distribution associated with that particular interval.

The purpose of the code is to produce a table of dynamic initial fragment

velocity, dynamic density and count number tabulated for each 5 of' 9 from

0 to 1800.

Essentially what the code does is to determine what fragment angle, 9
s

in the static test would be vectored forward to each angle 9D as the result of

a shell remaining velocity Vh. Having found the angle 9 f'or each 9D the

machine interpolates in the input table to determine the corresponding initial

fragment velocity, density and count number. The interpolated count number

then becomes the count number corresponding to the angle 9 D' In this way the

mass distribution is shifted forward with the Q interval to which it corresponds.

Then the interpolated values of' Q, V and a are used to compute VD and aD.Thnteitroae auso s s sD D

The resulting table is used as input for the lethal area code.

18



The mass distributions, each identified by an integer, contain a series

of fragment weights, mi, representative of the ith fragment weight group,

and a series of normalized percentages, qi, representing the fraction of the

total number of fragments in each of the fragment weight intervals.

In addition to the fragmentation characteristics, a table relating target

presented area and aspect angle, *, to the distance r is needed for each

height at which lethal area is to be computed. The relation between, aspect

angle, h, and r is shown in Figure 4.

h

ht

Figure 4

Also shown in Figure 4 are the quantities ht .and r; where ht is the

height above the ground at which it is desired to compute the probability of

incapacitation and r' is the distance which a fragment would have to travel

in order to hit that point. It is apparent that by specifying the r, h, and

*, r' and ht are fixed. This technique is used when it is desired to consider

targets at different ranges as being located at different heights above the

mean ground plane or where, as might be the case with a standing target, it

is desired to base the probability of incapacitation upon the fragment spray

striking the center of the man.

19



Figure 5 shows a sample input information sheet for the lethal area code.

The following paragraph will describe the various quantities needed.

NUMBER 357 - INPUT DATA

1. h =_ ft. Ah= ft. h = ft.max

Rml= ft. R =m ft. J = Intervals

Log Int. 2nd Int. Log Int.

2. -K = M = Intervals c = Radians

sin•= cos C= -a

5.b= bn= n __ Radians

4 1/2 1/3

4. 5_ __ _ Radians 4max = 3.14159

V = ft/sec Run ID -.01
h

5. -20 c max_1 x 10-8
max

No. of q and m

cutoff velocity ft/sec

6. Vector Run

7. q and m

8. Cover

FIGURE 5
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1. h initial height at which lethal area is to be computed

Lh increment by which burst height is to be increased if lethal areas

are to be run for several heights

hmax maximum burst height for which lethal area is to be computed
Rmxl rm (see section describing break down of AL integral)

Re2 re2 (see section describing break down of AL integral)

J number of intervals to be used in integration from Ln(h+l) to

Ln rml MUST BE EVEN INTEGER.

Kr

ml 132. -K from velocity falloff law V = V .er o

M number of intervals to be used in integration from rml to rm2

MUST BE EVEN INTEGER.

sin w w = shell angle of fall

Cos w w = shell angle of fall

W w = shell angle of fall MUST BE IN RADIANS.

-a casualty criterion constant

3. b casualty criterion constant

n casualty criterion constant

AG angular interval at which fragment density and initial velocity

and "count" numbers are stored in machine

4. no step size to be used in integration over 0

NOTE: NUMBER OF INTERVALS MUST BE EVEN.

Vh shell remaining velocity

Run ID number to be used for identification purposes

21



5. C number of mass distributions + 0.5
max

Cut off velocity it is generally assumed that there is some minimum

velocity which a fragment must have, regardless of its

size, in order that it has any chance of producing

casualty.

6. Vector Run identification number for table of Gs, Vs, a and count

number.

7. q and m identification number for whole group of mass distributions.

Not to be confused with identifying integers for the indi-

vidual mass distributions.

8. Cover where tables of presented area and aspect angle vs. r for the

burst heights of interest have previously been given to the

Computing Laboratory. An identifying symbol is used here.

At each point (ri, 10) of the integration grid the probability of

incapacitation is computed as follows:

The angle * and the presented area At are determined for the value of r.

from the table corresponding to the burst height being considered. The angle

@D at which a fragment must leave the shell in order to hit the target can

then be computed from the following formula:

Cos @D = sinw cos * + cos a sin * cos 0

When the angle QD has been determined an interpolation in the fragmentation

characteristic table is carried out to obtain aD, VD, and the count number

corresponding to the angle @D* The count number is rounded off to the nearest

integer and the associated mass distribution consisting of pairs of numbers

mi and qi (i=l,2,w) (mi = representative mass of ith the weight group w = number

of weight groups, qi = fraction of fragments in ith weight group) is selected.

Next the value r' is computed from the formula:

T2 2

r h2
sin

22



then the summation:

w
r qiPi=l Phk

is evaluated.

Then using the value of At and aD previously determined the probability of

incapacitation is computed as:

•Dt

()w
P =1-e Z 1 Phi

k 1 i

The numerical integration is accomplished as indicated below:

J+l 2 J+M+l )7
AL= 2  Lh+i/2)Il ()+ 3 x r i Ii(o) +- 3 =J r I

i=J+l

Lnrm - Ln(h+l) r.2 -r.1
where ALnr = r=

J M

x.=4 i even

=2 i odd and ý l, J+l, or J+M+l

i =1 i = l, J+l, J+M+l,

i+

ii() 3@ . v Pk i jl
SJ=l

v = 4 j even
j

v = 2 j odd and 1 or + 1

v =1 j=l, - + 1

=h+1 rj+ 1 =rl rJ+M+1 =rm2
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CONCLUSION'

It is hoped that the fairly detailed description of the lethal area

problem presented herein will provide the reader with adequate background

not only for the computation of lethal areas but also to enable him to consider

allied concepts and consider special cases bf the lethal area problem. Since

virtually all of the evaluation models used by the Weapon Systems analyst are

based upon a casualty concept, i.e., expected fraction casualties, number of

rounds or weight of ammunition required to produce a given casualty level,

etc., an understanding of the probability of-incapacitation concept discussed

herein is mandatory. Further many evaluation models utilized today are

approximations which utilize lethal area as such, giving some consideration

to weapon accuracy and target size.

K. A. MYERS
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